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ABSTRACT

A generalization of the class of monotone twistmaps to maps of S x

is proposed. The existence of Birkhoff orbits is studied, and a criterion for

positive topological entropy is given. These results are then specialized to

*the case of monotone twist maps. Finally it is shown that there is a large
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~MONTONE RECURRENCE RELATIONS,

THEIR BIRKHOFF ORBITS AND TOPOLOGICAL ENTROPY

Sigurd Angenent

1. Introduction.

In this paper we shall study a class of dynamical systems which

generalizes the class of "monotone twist maps" of two dimensional annuli, and

also the class of "degree one circle maps", both of which have been studied

extensively in the last decade or two.

The maps which we shall deal with are continuous maps T of the

generalized annulus SI x RN (N) ) into itself. The defining condition of

these maps is that they come from solving a recurrence relation

(1.1) A(Xk_,...,Xk+m ) = 0 (V k c Z)

in the first coordinate of a general point in S1 x RN. This is explained

more precisely in section two.

Our main concern is with the construction of Birkhoff orbits of

(defined in section three), and a criterion for positivity of the topological

entropy, htop (T), of the map p.

The main tool which we use is presented in section four, in the form of

theorem 4.2 and two afterthoughts. This theorem allows us to construct

solutions of the recurrence equation with prescribed qualitative properties.

The method of construction is a discrete analog of Perron's method of solving

the Dirichlet problem i.e. his method of constructing harmonic functions with

prescribed boundary values from subharmonic functions and "barrier functions"

(or super harmonic functions).

This research was partially supported by the United States Army under Contract
No. DAAL03-87-K-0043, by a NATO Science Fellowship and by the Netherlands
Organization for the Advancement of Pure Research (Z.W.O.).



As a first application of this method we show in section five how the

s existence of certain kinds of orbits of 9 implies the existence of a

Birkhoff orbit, thereby generalizing a result of G. R. Hall ([Ha 1]).

In section six we formulate hypothesis 6.1, which roughly speaking,

asserts the existence of two solutions of (1.1), say 1 ) and x 2 ), which( n

"exchange rotation numbers" in the sense that

_ 
(1)  x (2 )

lim-n > w >lim n-
n nn- o n -*m

and

X. (2) x (1)

lim -n < lim n

n+m n -

hold for some w0 < wl. It is shown that this hypothesis implies the

existence of Birkhoff orbits with any prescribed rotation number w in the

interval [w0,wj].

A more complicated construction, which is carried out in section seven,

shows that the hypothesis (6.1) implies that htop(y) > 0. In fact we show

that there is a compact set K C S1 x RN such that some iterate of T

leaves K invariant, and has a Bernoulli shift as a factor, when restricted

to K. Here we partially generalize another result of G. R. Hall, who in turn

was concerned with giving a topological version of a "shadowing theorem" of

J. N. Mather's (see (Ha 2] and [Ma 2] where Mather's result is announced). A

consequence of this construction is that the number of periodic orbits with

period 4 N grows exponentially with N. Moreover, our method of proving

existence of these orbits is constructive. Given x (1 ) and x(2 ) a computer

program could be written which constructs a great number of periodic orbits.

In section eight we specialize our results to the two dimensional case,

and ask which properties a map (i.e. a monotone twist map) with zero

-2-



topological entropy must have. The first result in this direction is that,

if htop(y) = 0, then any orbit must have a forward and backward rotation

number. Similar results, under different hypotheses, have been obtained by

M. Handel. The other result is that, if htop(T) = 0, then any periodic

orbit "of type (p,q)" with gcd (p,q) = 1 must be a Birkhoff orbit. This

result is originally due to P. Boyland [Bo]. As far as I am aware, both

Handel and Boyland rely on Thurston's classification of surface diffeo-

morphisms. By contrast, our approach is self contained, and as we have

pointed out before, constructive, in a certain sense.

Throughout section eight we could have weakened the hypothesis "htop(T) = 0"

to "there is no invariant set K C S x R such that ,1K has a subshift of

finite type as a factor. However, a theorem of Katok ([Ka 2]) shows that this

is not very much of a weakening. Indeed, if the map I is C1+C , then his

theorem says that both conditions are equivalent.

The next section, the ninth, deals with the question of existence of

Birkhoff orbits in general, i.e. without further hypotheses on the map T. We

obtain the existence of Birkhoff orbits with prescribed rotation number w,

not for the original map 9, but for a "translated map" which comes from the

recurrence relation A(xkL,...,xk+ m ) - A for some A. In general this A

will depend on w, and will not be zero. From this result we derive a

sufficient condition of the existence of at least one Birkhoff orbit of the

original map 9. The condition turns out to be (trivially) necessary as well.

We conclude this section by briefly specializing the results to the one

dimensional (i.e. degree-one circle maps) and the two dimensional (twist map)

case.

Finally, in the last section, by way of example, we indicate a number of

symplectic maps 9 which belong to the class of maps which was studied in

-3-



". .a this paper. In particular we show that there is a very simple mechanical

model, whose steady states are described by such maps.

12. Twist maps and recurrence relations.

Let A be the cylinder (R/Z) x R, and let A + A be an

orientation preserving monotone twist homeomorphism. On the universal cover

R2 of A a lift of 9 will be given by

F(x,y) = (f(x,y), g(x,y))

. where f, g are periodic in the sense that

'4 f(x+l, y) = f(x,y) + 1
(2.1)

g(x+l, y) = g(x,y)

-.1 (i.e. x is the angle coordinate). The monotone twist condition on says

that the function f(x,y) is strictly increasing in y.

In addition we shall assume that y satisfies the infinite twist

condition:

I
m

'.p~ lim f(x,y) -

4y+

Combined, these two conditions imply that for any pair x, x R R there is a

*unique solution Y(x,x) of the equation

f(x, Y(x,x)) - X

This solution is a strictly increasing function of x. It is continuous, and

satisfies

Y(x,x) - Y(x+I, x+1)

for all x, x e R.

From Y(x,x) we construct another function:

Y(X,X) - g(x, Y(x,x))

t-4-



This function is also continuous, and periodic in the sense that Y(x,x)

Y(x+1, x+1). We shall now show that Y(x,x) is a strictly decreasing

function of x.

Fox fixed x0 the image of the line x = x0 under the map F is given

by the graph of the function G0 (x) = g(x0, Y(x0 ,x)). This graph divides the

plane into two parts, one above it, and one below it. If x, > x0 is given,

then the image of the line x = x, must lie in one of these two parts. Thus

*. we either have g(x0 , Y(x0,x)) > g(xl, Y(xl,x)) for all x c R, or we have

the reverse inequality for all x c R. Since i and F are orientation

* preserving the latter cannot happen. Therefore x0 < x, implies that

Y(xox) > Y(x1'x) "

4 The construction of Y also shows that

lim Y(x,x) =
x+M

and similarly lim Y(x,x) =w.
x+--

Consider a sequence of points (xkYk ) (kcZ) in the plane. They are the

orbit cf a point under the map F if and only if they satisfy

xk1 f (xk'Yk)

" Yk ' g('k-l'Yk-1)

for all k c Z. The first equation is equivalent to Yk - Y(xkxk+ ) for

all k. If we substitute this in the second equation we get the following

equivalent set of equations:

Yk - Y(xk'xk+l)

Yk " Y(x k - 1'xk)

We see that a sequence of points (xky k) is an orbit of F if and only

if the x coordinates satisfy

-5-
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(2.2) A(Xk_1,Xk,Xk+1) = 0 (V k c Z)

and the Yk are given by Yk = Y(xk'xk+l)" Here we have written

(2.3) A(x_1,Xo,X1 1) = Y(Xo,X 1) - Y(x 1 x0 1

*i So instead of studying orbits of the map F one may as well study

solutions of (2.2).

N. The function A which we have just introduced satisfies the following

hypotheses. It is continuous, it is monotone increasing in both x_1 and

X+1, and

lim A(xl,X0 ,X1) = lim A(x_1 ,x0,X 1 =1

x -1+C XI ++ft

Finally, it is periodic in the sense that

A(.X.lxO,x1 ) = A(x_ 1+1,Xo+1,x 1+1)

holds.

Motivated by this example we shall consider monotone recurrence relations

of type ({,m) for 1, m 1 1. We define such a relation to be one of the

form

(2.4) A(Xkt,...,xk+m ) = 0 (k c Z)

where A is a continuous function of I + m + 1 variables which satisfies

the following conditions:

(2.5): a monotonicity A(x_,,...,xm) is a nondecreasing function of all

the xj except possibly x0 . Moreover, it is strictly increasing

in the variables x_£ and X+m.

b periodicity A(x-£,''',xm m

c coerciveness lim A(x_£,...,x) = +w and
x +4-r
X-L +-

lim A(x_ ,...,x) =
x ++-

m-6-
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If (xk_£.. .,lxk+m_ 1 ) is given then conditions a and c imply that we can

solve (2.4) for Xk+m . In this way we have defined a continuous map F&

from RE+m  to Rt+m, given by

FA(Xk_ , .... Xk+m I ) = (Xkk+1I, •DxV.+m)

The conditions a and c also imply that we can solve (2.4) for xk_ £t if the

other variables are given. Thus the map FA is a homeomorphism of Rt +m

onto itself.

-' Throughout the paper we shall keep one fixed Z action on 1t+m in

mind. It is given by

(xt ,...,Xml) + i = (xL+i,...,Xm_1+i)

for i c Z. The quotient RL+m/Z is homeomorphic to S1 x RL+m - 1. We shall:0=

call it A since it generalizes the annulus (R/Z) x R which we started

with.

The periodicity condition b implies that FA is equivariant with respect

to the Z-action on R +m , i.e. FA(xei) = FA(X) + i. Hence it defines a

homeomorphism on the quotient At+m , which we shall call P.. This class of

.homeomorphisms is our generalization of the class of monotone twist maps of

the annulus.

4. Our assumption that L ) I is not a necessary assumption. If we allow

*I - 0 then we can still define the maps FA and T as above. The only

difference is that they need not be invertible anymore. Except for this all

the results which we shall derive in the following sections remain true. In

*1 particular they apply to degree-one maps of the circle. If h : R + R

satisfies h(x+1) - h(x) + 1 then the solutions of (2.4) where have taken

A(xo0 x1) = x1 - h(xo)

are exactly the orbits of the map h R + R. Our map 1A is the map which

h induces on the circle R/Z.

-7-
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53. Birkhoff orbits, and the space X.

Let X denote the space of bi-infinite sequences of real numbers, i.e.

X = We equip X with the product topology.

The space X is also partially ordered by:

x < y M Xk 4 y for all integers k

where x, y - X. The following notation is sometimes used:

x < y <---- x y and x y y

x << y xk < Yk for all k c Z

Given a pair of sequences x, y C X such that x 4 y we define the order

interval

(x,y] = {z x K : x < z < y' •

Any order interval is homeomorphic to the product [ 0 , 1 1 Z, which is a compact

metrizable space.

On X we have a Z x Z action, T, given by

Tmn(X)i = xim + n

This action is compatible with both the topology and the partial ordering we

have on X.

A sequence x e X will be called a Birkhoff-sequence if for any pair of

integers (m,n) one either has Tmn(X) > x or Tm,n(X) < x. We shall

denote the set of all Birkhoff sequences by B.

An equivalent definition of a Birkhoff sequence is the following. A

sequence x c X is a Birkhoff sequence if and only if for any i, j, k e Z

one has

% x i < xj + k <==> xi+ I < xj+ I + k

Thus, if Ixil is the sequence of x-coordinates of an orbit of a monotone

-8-
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* twist map, then x is a Birkhoff sequence if and only if the map preserves
'S

the order on the orbit. This is the usual definition of a "Birkhoff-orbit"

(see [Ka 1]).

It is known that if x ' B is a Birkhoff sequence, then x has a

rotation number, i.e. the limit

lim Xk def (x)
k+W

exists. In fact one has the following inequalitie

,3.1) x 0 + L]kJ - xk < x0 + LwkJ + 1 (k Z)

where Lwkj is the largest integer below wk.

The set of Birkhoff sequences, B, which is the intersection of the sets

{x t X : rm,n(x) > x or Tm,n(x) 4 x), is a closed subset of X.

The whole set B is not compact, but the inequalities (3.1) imply that
"I

for any two constants a, 8 > 0 the closed set

{x c B I Jxol 4 a and Iw(x)l < 81

is contained in an order interval, and therefore compact.

We shall occasionally say something about periodic orbits "of type

(p,q)".

If the map 9 of R£+m/Z has a periodic point P with period q,
I,

then some lift (x_.,...,xm_.) £ Rl +m  of P will almost be periodic in the

sense that the corresponding sequence fxk, k c Z) c X satisfies

(3.2) Xk+q - xk + P (k C Z)

*for some p C Z. Another way of saying this is x = Tp,q(X).

By definition any sequence x c X will be said to be periodic of type

*. (p,q) if it satisfies (3.2).

If x c x is periodic of type (p,q) and if x is also a Birkhoff

.~ orbit or sequence then x is periodic of type (p0,q0) where p = lePo

-9-
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q = t*q0  and I = gcd(pq).

Indeed, x c B implies that we have Tp0 ,q0 (x) > x or Tp0 ,q0 (X) < X.

Suppose the first holds, and for some i C Z we have

(x)i > xi* i.e. xTp0,q( >xi-q 0 + PO > xi

Then Tp0,q (x) > x implies that for all k C Z

xi-kq0 + kp 0 > xi_(k-l)qo + (k-l)p0

so that xi = xi-qo + Xp0 > xi, a clear contradiction. If we didn't have

W x x but T (x) 4 x instead then the same argument would showp 0 ,q 0 ) p 0 ,q 0

that we still have ,qo(x) = x.

O-

§4. Subsolutions and supersolutions.

* Let A c C(R4+m + ) be a monotone recurrence relation of type (L,m) as

we defined them in section 2.

A sequence x c X is called a subsolution for A iff

(4.1) MXj.... xj+m) > 0 (V C Z)
5w'.,S

holds. Similarly, a supersolution is a sequence x c X such that

* (4.1') A(Xj_,...,Xj+m) e 0 (Vj C Z)

holds.

The next lemma states some of the elementary properties of sub- and

super-solutions.

Lemma 4.1. (a) The set of subsolutions for A is closed in X.

5/' The same holds for supersolutions.

(b) If {x(a)},,A is a family of subsolutions which is bounded from

above (w.r.t. the partial ordering on X) then sup x(a)

-10-
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defined by

(a s'p~ (0i)
ISPx .=sup (X i
a a

is a subsolution.

Analogously, a family of supersolutions x (a) which is

* bounded from below has an infimuni, and inf x(a) is again a

supersolution.

Proof: Part (a) follows immediately from the continuity of the function

*To prove part (b), let x(a) be a family of subsolutions, indexed by

A, and let x = sup x . Then for each j - Z there exists a sequence

of Ojk'S for which

(ai) - -
x. > x -2 (k = 1,2,3,...,j , Z)

..- % J )

(a jk
holds. Clearly x = sup x so that we may assume that the family of

j,k
XW)'s is countable. Moreover, if one defines

"X(N) sup(x (ajk) 1 0 4 k, )ji K N)

then, as N + c, the x(N) converge in the product topology on X to x.

In view of part (a) of this lemma we only have to consider the case in which

the number of x(a)'s is finite. In turn, this may be reduced to the case of

only two x(0) 's, by means of an induction argument.

So consider two subsolutions x, y e X and let x - sup(x,y) be their

maximum or supremum. Let j c a be given, and assume that xj yj. Then

for any nonzero integer k in the range -L 4 k 4 +m one has x ;+k Xj+k,

so that the monotonicity of A (i.e. hypothesis 2.5a) implies that

> _-) 0

% If xj yj then one has, for the same reasons,

q,'., -1 1-

0'

~A ~.~ . . ~~ ~ .~ ,. - .4 * . 4.4. ~.%



&(..y .. A()> &Yj -'jm

In either case we obtain ( 2,1:...,Xj+m ) : 0 for arbitrary j, so that x

is a subsolution. This finishes the proof of the lemma.

The next r- sult shows how subsolutions and supersolutions may be used to

construct actual solutions of the recurrence relation (2.4).

Theorem 4.2. Let x, x C X be a sub- and a supersolution, respectively

which are ordered: x < x. Then there is at least one solution of (2.4), say

x, between x and x, i.e. for which x 4 x 4 x holds.

Proof: Define

S = {x c X I x is a subsolution and x x}

Clearly S is bounded from above, so that

x - sup S

exists. Since x c S we have x 4 x 4 x. By our previous lemma x is again

a subsolution, and therefore x c S. We have for every integer j

(4.2) A(xj_1,...,xj+m) ) 0 .

We claim that equality holds for all j, i.e. that x is a solution of

(2.4).

To reach a contradiction assume that for some j strict inequality holds

in (4.2). Then we must have xj < xj, or x. x..

* In the first case we define

x + if J k

Xk
X. if j k

The monotonicity of A implies that A(x_ , ,x +m )  0 whenever k ' j

and c ) 0. Since we have strict inequality in (4.2) and A is continuous we

also have (xtI...,x3+m) ) 0 if c > 0 is small enough. So for small

£ 0, xc belongs to S, but xC > x which is a contradiction.

". -12--
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,2 In the other case, i.e. xj - xji we observe that, due to the

monotonicity of A,

AN _, . _ . .. i > 0 •

But x is a supersolution so that we have a contradiction again.

We must conclude therefore that x = sup S is a solution of the

recurrence relation.

It should be clear from the proof that if we had defined

S = Tx C X I x > x and x is a supersolution'

then inf S would also be a solution of the recurrence relation. In general

one expects inf S and sup S to be different.

* The theorem can also be used to construct Birkhoff orbits or sequences.

Addendum (4.3). If at least one of x and x is a Birkhoff sequence,

then there exists a solution x of (2.4) which lies between x and x, and

is a Birkhoff sequence.

Proof: Let x be a Birkhoff sequence. Then we shall prove that x -

sup(S) also is a Birkhoff sequence.

Let m, n be given integers. Then we have T m,n(X) 4 x or

T m~nm(x
, Tm,' Cx) > x.

In the first case we have, for any y S,

T tmn(Y) IT Mn(x) jx

so that Tm,n(y) S (note that the translations Tm,n preserve the ordering

on X). Thus Tm,n(S) C S and

Tm,n (X) Tm,n (sup S) sup *m,n (S) 4 sup S = x

In the other case we have T (x) . x, so that the same argument shows

that T-m,.n(X) 4 x or, Tm,n(x) > x.

The conclusion is, that for any m, n c Z, one has either xm,n(x) 4 x

-13-



or T (x) ) x, so that x is a Birkhoff sequence.m,n

If x is not a Birkhoff sequence, but x is then one shows in the same

way that inf(S) is a Birkhoff sequence.

Addendum (1.4). If at least one of x or x is periodic of type

(p,q), then there exists a solution x of (2.4) which lies between x and

X, and is periodic of type (p,q).

Proof: Let x be periodic of type (p,q). Then T p,q(x) x, and

therefore y c S implies Tp,q(y) c S. But then Tpq(Sup S) = sup 'j, so

that sup S is periodic of type p,q.

SLikewise, if x is periodic of type (p,q) then so is inf S.
.3

-5. A generalization of Hall's theorem.

In [Ha 1] G. R. Hall proved that any monotone twist map, which has a

periodic orbit of type (p,q), must have a Birkhoff orbit of the same type.

The following theorem generalizes this result.

Theorem (5.1). Let x C X be a solution of the monotone recurrence

relation (2.4) for which one can find a real number w such that

M - sup Ixk - k.l < •
kCZ

Then (2.4) has a Birkhoff solution whose rotation number equals w.

Proof: Any translate Tm,n(X) of x is also a solution. Our

assumption implies that

supTm,n(x) n < m.w}

and

x =inf(rm (x) J n ) m.c}

both exist and that

-14-



0 4 Y- k = up (xk + n - x k ) < 2 M

0 o xk - x k  2M

- -k

holds. So if we define zk =X-k - 2M and Yk- x + 2M then is a

subsolution, y is a supersolution and y < y.

Moreover, y and y are Birkhoff sequences.

To see this let r, s z be given and consider Tr,s(_):

T rs (x) =sup(rM+rn+s (x) I n mw)

sup(T mn (x) I n mW + s - rw)

> x if s ; rw

< x if s C rw

Thus x is a Birkhoff sequence, and therefore y is one too. A similar

argument proves that y is a Birkhoff sequence.

The addendum to theorem 4.2 implies that the recurrence equation (2.4)

has a Birkhoff solution y, between y_ and y. Clearly y must have

rotation number w.

16. Quasiperiodic orbits with prescribed rotation number.

In this section we assume that for some < w, there exist a

subsolution x and a supersolution x of (2.4) such that

-15-
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xk
lrn inf w

lm sup k WI

k+-

(6.1)

I" lim sup 4-<
k-. k

holds. The main result of this section is:

Theorem 6.1. For any w e [w0 ,wI] there is a Birkhoff solution of (2.4)

with rotation number W.

Proof: The inequalities (6.1) inply that

nli inf Jkl- 1 * (xk - wk) > minw 1 -w, o) Ow) > 0

and

li sup Jkl -1 • ( -w-k) 4 max(w-wi, ,,-,) < 0

k++ao

Hence there is an integer N > 0 ,such that for all k C Z one has:

(6.2) k) k - N and . tiwk + N

Now define

y - inf(r m,n(x) + N n ;o mw

-= sup(r (x) - N n • mw)* Z m,n -

Then, on the ground of arguments similar to those which were used in the proof

of theorem 5.1, one concludes that y is a Birkhoff supersolution with

rotation number w, and that y is a Birkhoff subsolution with the same

rotation number.

-v
Furthermore (6.2) implies that

Yk > k > Yk '

-16-



i.e. that _ < y. By the em 4.2 and the addendum (4.3) there st be a

Birkhoff solution y between Z and y. This Birkhoff solution has rotation

number w

17. A criterion for positive entropy.

Under the hypotheses of section 6 we can construct a great number of

orbits of Va. This construction leads us to the following conclusion.

Theorem 7.1. Let the monotone recurrence relation (2.4) have a sub- and

a supersolution, x and x respectively, which satisfy (6.1) for some

- Then the map 4p has positive topological entropy. In fact there is a

compact subset K of A'+m such that some iterate of T. leaves K

invariant, and has a Bernoulli shift as a factor, when restricted to K.

Since the existence of K implies positivity of the topological entropy

of Va we only have to construct it to prove the theorem.

The construction proceeds in three steps. In the first step we use x

and x to construct a nicer pair of sub and supersolutions w and w, which

are wedge shaped, as in figure 1.

Then, in the next step we consider a biinfinite sequence of translates

of w and w. These translates of our original wedges are chosen in such a

manner that, if W denotes the supremum of all subsolutions in question, and

W the infimum of the translated supersolutions, then W < W and from the

results in section four we know that there is a solution W between W and

W. It turns out that we have so much freedom in choosing the translated sub-

and supersolutions that we can let the constructed solution W follow any

"zig-zag pattern" we like (see figure 2).

-17-
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Figure I. Graphs of w and w
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Now let's fill in the details.

The wedge like sub and supersolution

Choose two rational numbers po, p, such that

WO < PO< P, < W

holds, and define the functions

z(t) = P 0 t - P t-

Z(t) = pit+ - Pot-

where t+ = max(t,O) and t- = max(-t,O).

From our sub- and supersolution x and x we construct new sub and

* supersoluticns

W - SUP[Tmr (x) :n 4z(m))

(7.1)
w - inf{'r MonW) n ) Z(M)}

Lemma 4.1 assures us that w is a subsolution, and that w is a

* supersolution.

our hypothesis (6.1) on x and x implies that

xk > ZWk - 14

and

x( z(k) + M

holds for all k c Z, with M independent of k. For any (m,n) with

n 4 z(m) one has

(Tm,n 1)k - k- n

< z(k-m) + M4 + z(m)

< z(k) + M4

(note that -z(t) is sub additive, so that -z(k) ), -z(k-n) - z(m) ).Thus

after taking the supremun over all m,n with n z(m) one finds

-19-
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=W z(k) + M

Furthermore, if one puts m = k and n - LzklJ (the largest integer below

z(k) ) then

.k - (Tm,n 1)k = .. + Lz(k)j

Without loss of generality we may assume that the constant M is so large

4... that M > + 1. Then we have just proved that

(7.2) - z(k)l K M

for all k . Z.-a

A similar argument gives

(7.3) Jwk - Z(k)l < M

(it may be necessary to increase the constant M one more time).

Construction of a zig-zag solution

In the previous step we had chosen two rational numbers po, pl. Let

%Q be a common multiple of their denominators, so that pOQ and p1Q are

integers. We choose Q so large that

(7.4) (pl-po0)Q > 4M

Let (ek; k C Z) - e be an arbitrary biinfinite sequence of zeroes and

ones (i.e. ek - 0 or ek - I for all k c Z). Given such a sequence we

define two functions, Xe(t) and Ce(t). On the interval JQ 4 t < (J+I)Q

we define

Xe(t) - Pej

i.e. p, if ej - 1 and p0 if ej - 0. The other function is given by

Celt) - A' Xe(s)ds .

a% 4.For any integer J, el(JQ) is an integer, and we always have the inequalities

.. - -20-
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''zlt) C elt) < Z(t)

whatever e is.

Now define
V', W "'pT(! i Z

, .e = jQ,4 (jQ) (w) j C Z)
e

We = inf[TjQe(jQ) (w) j C Z}

Proposition 7.2.

W__ek- k e (k)l m

,,: %e,k e

Proof: For any m c Z we have

[TjQC (jQ) (w)]m - 4e (M)
e

W "W + C (jQ) - C (M)

-M-jQ e e

. W-n-jQ - z(m-jQ) + z(m-jQ) - )ds

< Q - z(m-jQ)

<M

where we have used (7.2) in the last step, and the inequality

z(t) S x+t xe(S)ds (Vt c R, x £ R)

*1*%' (which follows from P0 4 Xe 
< 0I) in the second last step. This proves one

4.' half of the first inequality. To prove the second half we choose an integer

j such that JQ < m < (J+1)Q.

If ej - 0 then

W ) (w)
-e,m JQ) -m

.*: -+ (JQ)

01 -21-



) z(m-jQ) + (JQ) - M

- P0(m-jQ) + e (jQ) - M

= (jQ) - S

In case ej = 1 one compares We,m with r(j+1)Q, e((j+I)Q) (w)m to arrive

at the same conclusion.

Therefore the first inequality in the Proposition holds. The proof of

the second inequality is analogous to that of the first.

It follows immediately from this proposition that We - M and w + M"e e

are a sub- and supersolution, and the W. - M 4 W + M, so that there must be

at least one solution W of (2.4) which lies between W - M and W + M.* -O e

Construction of the set K

Let Ee denote the set of solutions of (2.4) such that We - M 4 W

4 W + M. We have just seen that Ze is nonempty.
e

Let E be the union of all Ee where e ranges over all possible

{O, 1}-sequences.

To define K, we recall that it has to be a subset of Rl+m/Z, where Z

acts on RI4" via (x-t,...,Xmi) + 1 (x..+1,...,Xm.l+1)-

Then we put

Ker 2 x £Eel

and

K - {(x-t,...,x,-I)mod Z I x c E)

C.- Proposition 7.3. K and the ye are compact.

Proof: Since E. is contained in the order interval [W e-M, ;e+M] it

is precompact in the product topology on X. Since it is closed Ee is in

fact compact.

-22-
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Each Ye is the image of Ee under the projection map from X to

R1+/Z, which is defined by

.?W(x) =(x_£• .,m_ ) (mod Z)

for x c X. Thus re = n(Ze) is also compact (the projection map is

continuous).

We claim that Z is also compact. To verify this we observe that Z is

contained in the order interval {x c X I z(k) - M ( xk 4 Z(k) + M) and

therefore is precompact. It remains to show that Z is closed. Since X is

. metrizable we only have to check for sequential closedness. So let m

be a sequence in Z which converges to w C X. Then for every m 1 1 there

is a 10,1, sequence e(m) = (ekm)lkZ such that w(i) C Ze(m). Now, by

passing to a subsequence if necessary, we can arrange things so that for any

k the sequence fek W is eventually constant. If one runs through the

.definition of the W and W one more time then one sees that this impliesj e

-- that the We(m) and W (m) converge to W * and W * respectively (where
e e e

" * *))
. . ek  lira ek

It follows that w c Z * and thus w c E.
Hence

Hence is closed, and even compact.

We way conclude the proof of the proposition by noting that K irC1) is

the continuous image of a compact set, and therefore also compact.

p' Proposition 7.4. The sets Ke are pair wise disjoint.

-23-
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Proof: Let (x .., fxmi) c R +  represent a point in Ke . Then we

can form its orbit under the diffeomorphism FA (defined in section 2 - it is

a lift of 9A), which gives us a biinfinite sequence {xj}j Z = x.

On the other hand, there must be an x c Z such that

(x-. ( _£ 1 ,)(mod Z) = 71(1. Since x is a solution of (2.4) it is uniquely

determined by its components (x_,..._IX ), and we see that

x = x (mod Z).

+. By proposition 7.2 we see that

I( (j+I)Q - j.Q - e. Q1

(7.5) < 2M + l~e((J+l)Q) - e(jQ) - pe"Qi
e e e

)

- 2M

We had assumed that (p 1 -p 0 ).Q > 4M, so that the inequality cannot be true

for both e i m 1 and ej - 0. In other words, given our point in Ke we can

find ;, and from x we can compute the sequence e. Hence two different

Ke'S cannot overlap.

The proof of the last proposition also shows that we have a continuous

. mapping E * wtere 1 0,= is the space of all {0,1} sequences
. +

equippe t the ir i is homeomorphic to the Cantor set).

The mapru-r , +s sar'ective.

-24-

0'



- ~ ~ ~ ~ ~ ~ ~ ~ ~ L W* W' . I - . I. Ii' -~~wvr Y 7 N- --- -LJ I . - '- -. . . .

On C we have a homeomorphism, called the shift. It acts by a(e)k

ek+1' Using the fact that if w c Ee' then

W= T _-(w) with P -Pe. Q

- *,

belongs to la(e), and also the fact that

("r(w)) =IIl(w)

V-.
one can verify that

(i) K is invariant under (9,)Q

(ii) c o ( = a o c, i.e. (VA)Q maps Ke onto KC(e)"

S We can restate this by saying that (C,a) is a factor of (K, (TA)Q}.

By ai standard result of ergodic theory this implies that V. has positive

topological entropy (see [Wa]).

We conclude this section with the following observation. If e C C is a

periodic sequence then the corresponding sub and supersolution, W and We,

are also periodic of type (k,l) for suitable k and t. By the second

addendum to theorem 4.2 we know that there must be a (k,t)-periodic solution

we between We and We. Thus we obtain the existence of many periodic

orbits of the map q.

Indeed, if the sequence e f C has period k0 , then k = k0oQ. It

follows that the number of periodic orbits of T whose period divides k0oQ

is at least 2 •

, -. 18. Twist maps with zero entropy

Using the criterion for positivity of the topological entropy which we

2:.: derived in the last section, we now study monotone twist maps of the (two

-25-LA
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% 11
dimensional) annulus A = R x S , whose entropy vanishes.

Let T be such a map, and let F be its lift to R2 . We assume it

satisfies the conditions which were described in section 2. To any point P £ A

we associate the sequence (Xk(P)1 where Xk(P) is the x coordinate of

Fk(P ') and P' is a lift of P. The sequence Xk(P) depends on the

particular lift P' of P which we choose, but the sequence Xk(P) - x0 (P)

4 doesn't.

We define the forward- and backward-rotation numbers of P to be the

.% limits

.'

(P)-X (P)
k 0

+ +(P) = lim k
.- k...a

0
if they exist. We shall allow p.IP) to be + or - .

-.1 The main result of this section is:

Theorem (8.1). If the map T has zero topological entropy, then every

,P C A has a forward and backward rotation number.

Our other result is:

Theorem (8.2). If the map 9 has zero topological entropy and P is a

periodic point of type (p,q) with gcd (p,q) 1 1, then the orbit of P is

a Birkhoff orbit.

This was originally proven by P. Boyland, using Thurston's classification

of surface diffeomorphisms.

We begin our proof of these theorems by assuming that we have transformed

the problem of finding orbits of the map 9 to the problem of finding

solutions to the recurrence equation. (2.2).

Let x, y c X be two biinfinite sequences. We shall say that x and y

intersect at the integer k if either

(yk - xk) (Yk+1 - Xk+l) < 0

..- 26-



or

Yk= Xk and (Yk-1 - Xk-1) (Yk+1 - Xk+1) < 0

holds.

-Clearly x and y are ordered if and only if they do not intersect at

any integer k. In particular x is a Birkhoff sequence iff it does not

intersect any of its translates, Tm,n(x).

Given a sequence x c X, it can happen that, for some pair of integers

(m,n), with m > 0, x and Tmn(X) intersect at an infinite number of

positive integers k1, k2, k3 . . . . . We shall denote the set of (m,n) for

which this occurs by J(x). In addition we define the corresponding set of

ratios:

R(X) = {- I (m,n) c J(x)} C Q

m

*- Lemma 8.3. If R(x) is finite, then x has a forward rotation number.

Proof: Define

k Xk

p = limsup -- and £=lim inf -
-k+=

If x does not have a forward rotation number, then p < p, and there has to

be a rational number a/b such that P < a/b < p. Moreover we can choose

a/b in the complement of R(x).

Then x and Tba(X) intersect only at a finite number of positive

integers, and there must exist a k > 0 such that for all j > k one has

xj.> xj.b + a

S or, for all j > k one has xj ( xj-b + a.

In the first case one proves inductively that xk+tb > xk + La, so that

; o a/b which is impossible. The second case also leads to a contradiction.

Thus we have p = p.

Note that we cannot exclude the possibility that the forward rotation

-27-
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number, which was shown to exist, is infinite.

Lemma 8.4. If R(x) contains two or more elements, then the map c has

positive topological entropy.

Proof: Let a/b < c/d be two different elements of R(x), and assume

that we actually have (b,a) c J(x) and (d,c) c J(x). In particular we

. have b > 0 and d > 0.

We shall construct a supersolution y whose backward rotation number

is a/b, and whose forward rotation number is c/d.

Since x and Tba(X) intersect infinitely often at a positive integer

there must exist a j > 0 such that

. x. T (b,a(x). = x. + a

.j+1 > Tb,a x)j+= xj+1_b + a

holds. In other words there must exist a j > 0 such that xi - Tb,a(x)i

increases from negative to positive at j.
* i" -.

For i 4 j we define yi as follows:

yj - xj yj-1 ' xj1'**'Yj-b+1 =Xj-b+l

Yj-b ' xj - a Yj-b-1 = Xj-1 - a,...,Yj_ 2b+l xj-b+l -a

" and in general for t 0,1,2,...,b-1, and s > 0:

* Yj-sb-t ' xi-t - s.a

Then we claim that for i 4 J-1 one has A(YilYiYi+l) ( 0. Since the

sequence yi is periodic we only have to verify this for i - -, j-2,...,j-b.

For j •i • J-b+1 one has y, - xi, so that

£ - A(i1,yiyi+l) = A(xi 1,xjixi+i) - 0 (j-1>i>j-b+2)

At i -J-b+1 one has

SA(yi-I'YiYi+i ) " ANj-b+2'xj-b+l'xj-a)

- j-b+2'xj-b+1'Xj-b

-28-
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since A is increasing in its third argument, and xj-a 4 xj.b. A similar

argument can be used to verify the case i = j-b.

It remains to define y, for i > j. Since x and td,c(X) also

intersect at an infinite number of positive integers there must be a k ; 0

such that

xk )o x - + c

'k+1 " xk-d+1 + c

holds. Moreover we can choose k (much) larger than j. Given this k we

define yi = xi for j 4 i 4 k, for any t = 1,2,...,d and s = 0,1,2,...

we put

Yk+s.d+t = xk+t + s.a

" As above one easily verifies that y is a supersolution. Furthermore y has

* a forward and backward rotation number equal to c/d and a/b respectively.

A similar construction can be used to construct a subsolution X with

forward rotation number a/b and backward rotation number c/d.

The sub- and supersolution, X and y, satisfy the hypothesis (6.1) so

that theorem 7.1 tells us that the map 9 has positive topological entropy.

This completes the proof of lemma 8.4.

Proof of theorem 8.1. If 9 has zero topological entropy, then by lemma

6 8.4, the set R(x) has at most one element, for any given solution x of

(2.2). By lemma 8.3 this sequence must have a forward rotation number.

Observe that the reversed sequence x.k x.k satisfies the recurrence

relation

,&(xi-1 xiXi+1) 0

where Z(r,s,t) - A(t,s,r). The map corresponding to this (monotone)

recurrence relation is conjugate to the inverse of T and therefore also has
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zero topological entropy. Therefore the sequence x has a forward rotation

number, and the sequence x has a backward rotation number.

Proof of theorem 8.2. Let x c X be a sequence which is periodic of

type (p,q). Then for any (m,n) the sequences x and Tm,n (X) either do

not interesect, or they intersect infinitely often (since they are periodic

with the same period).

The periodicity also implies that if x and Tm,n(x) intersect then

x and Tm+q,n+p(X) do too. So if (m,n) c J(x), then (m+q,n+p) e J(x)

and both n/m and (n+p)/(m+q) belong to R(x). Since we are assuming

that T has zero topological entropy we can apply lemma 8.4 to conclude

that n/m = (n+p)/(m+q). But this implies that n/m = p/q.

Our other assumption was that gcd(p,q) = 1. Therefore there is an4.

integer I > 1 such that (m,n) f (Lq,Lp). This cannot be true, however,
4.

since we then would have Tm,n(x) = x so that they do not intersect.

We see that the assumption that x and Tmn(X) intersect for some

4. (m,n) leads to a contradiction. So x does not intersect any of its

translates, which means that it is a Birkhoff sequence.

19. Existence of Birkhoff sub and supersolutions in general.

We return to the more general monotone recurrence relation (2.4). Given

any w c R the equation (2.4) need not have a Birkhoff solution with rotation

number w. Instead of this, we have the following.

Theorem 9.1. For any w c R there is a Birkhoff sequence x C B such

* that for some X c R

(9.1) A(xkL,...,xk+m ) 'A (k c Z)

(where A does not depend on k), and such that x has rotation number w.

F-30-
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In particular, x is either a subsolution or a supersolution.

Using this theorem we shall also prove the next result.

Theorem 9.2. If (2.4) has a Birkhoff subsolution x(0 ) and a Birkhoff

supersolution x(i) then it also has a Birkhoff solution x.

If wiis the rotation number of x~)then the rotation number of x,

SW, can be chosen between w0 and w, (i.e., wo w 4 w, or W 4 I '

depending on how w0 and w, are ordered).

Although there is a superficial resemblance between this theorem and

theorem 4.2, they are really different. The difference is of course that we

do not assume that the sub and supersolution in the last theorem are in any

way ordered.

We would also like to point out that, in the case of monotone twist maps,

relation 9.1 reduces to

Y(xk+1, Xk) - Y(xkl,xk) +

in the notation of section two. Therefore solutions of 9.1 correspond to

orbits of the "translated twist map" given by

F (xy) = (f(x,y), g(x,y) + X)

(again we use the notation of section two).

'1' These maps have been studied before, e.g. by Chenciner in [Ch, section

6]. Our main motivation for studying (9.1), or the FA's is that they seem

to be a natural one-parameter family of maps, or recurrence relations
'p.

associated to A. Moreover theorem 9.1 leads to a convenient proof of theorem

0., 9.2.

We begin the proof of theorem 9.1 with the following observation. If

there is a dense set of w's in R, for which the theorem holds then it is

true for any real w. Indeed, suppose we can construct Birkhoff orbits

x(J ) c B with rotation numbers w(J) and suppose the w(J) converge to some
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c £ R. Then we may assume that the x(j ) satisfy 0 1, and by the

compactness criterion of section three (see 3.1) we can extract a convergent

subsequence. The limit of this subsequence will be the desired Birkhoff orbit

with rotation number w. (This trick is not without precedent, see [Ka 11.)

The theorem is also true if it holds for any 6 which satisfies the

following strict monotonicity condition

(9.2) A = A(xx...xXm) is strictly monotone

in each xj except x0 •

To see why this is true, let A be any function which satisfies a, b

and c from section two. Then

m

A (x .-,Xm) = A(x *o.x M ) + xj - (L+m+1)x 0 )e L m-£m

still satisfies a, b and c, and in addition satisfies condtion (9.2), for

- any £ > 0. So for any £ > 0, A has a B4 -khoff sequence xe which

satisfies (9.1), and has rotation nmuber w. Again we may take a cluster

point of the xe as e + 0 to obtain a solution of 9.1 for our original A

with the appropriate rotation number.

So from here on we assume that w = p/q, and that a satisfies (9.2).

. Moreover we suppose gcd(p,q) = 1, and q > 4.

We shall show that a solution of (9.1) must exist by means of a homotopy

argument.

.Let Bp,q denote the set of (p,q) periodic Birkhoff sequences. Then

Bp,q is not empty; it contains the sequence xj - jp/q. The set BPq is a

closed convex subset of the vectorspace X. If we let Xpq denote the

affine subspace of X which comprises all (p,q)-periodic sequences, then

Bp,q has nonempty interior in Xp,q*

By the compactness criterion of section three, the set

S-32-
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D x C Bpq x 0 )

is compact. In fact D is homeomorphic to the (q-1) dimensional unit ball

in Rq-1, and the mapping

(9.3) pxB q(9.3) X ( p,q (x0 ) x(,Xl-X0,...,Xq-Xo) ExD

is a homeomorphism of Bp,q with R x D.

The Z-action on Bp,q induces a Z-action on R x D. This induced action

is given by "addition to the first coordinate", i.e. (x,d).k + (x+k,d) if

x c R and d c D.

We let K denote the quotient

% K = Bp,q/Z

and let 3K be its boundary 3K =(3B )/Z, where a,q is the boundary

and et 3 be ts bunday M Op q

of Bp,q in Xp,q.

Using the homeomorphism (9.3) we see that K S x D and 3K S1 X Sq - 2

On K we define a continuous mapping into RR, given by

6 (X)i = A(xi_£t...Xi+m) (1 c i < q)

At first sight it looks as if 6 is only defined on Bp q, but the

periodicity of A makes that 6 is also well defined on the quotient.

SGiven 8 we define one more mapping, e:

k(x) 6 (x) - q 6(x) (k = 1,2,...,q)
k ~jj

Thus, e is a map from K to the subspace

. A q { 6 1,.. 6q )  
q I 61 + 62+.'+6q = 0}

of Rq . We have constructed e in such a manner that solutions of (9.1) are

* exactly the zeroes of c.

Lemma 9.2. £ does not vanish on 3K.

*. -33-

Sim&



i '-Proof. Let x and y be any pair of solutions of (9.1), and assume

'p.

0--

that x h y. Then we claim that the strict monotonicity hypothesis (9.2)

implies x << y.

th Indeed, if for some k we would have x k =kYk then

A(xk ... lxk+m) m A(yk ... hyk+m) w

x Bp~q

cobied withud thatit m oenot vnis of n h th at ound real hav K.

Yk- This -em L hw tha j d m B eaigtsaruetoefinds tha xapin =ro yKinoi}.

"i conder Xh asocaelongsoorphi f and( onl if2(K fo any ( } paro oftgr

(kl) one has Tkt(x) >ax or t kt(x) x The same point will belong to

Wthe boundary of Bp q if, in addition, for some (kt) one has TkL(X) x

(or TkLk(x) < x) but not TkLt(X) " x (or Tk,,(x) << x respectively).

If this point were a solution of (9.1), then Tktx would be one too

4..asue ta q)4

so that rk,(x) >0x would imply TkL(X) >> Xt But that would contradict

..' 'onside the(\} =ass.ciateflowdha h homomorphism q2() is represented of

' " " an iteygr, whichowe hatlcl ths grop reellhi defined isdined e have

snWe cocldedsw that c doe no vansao the t of K.

-p-

Futhismoem sjhows th h p defi e f mapin fro 3 to1.W

consider the asoItedlow ha h homomorphism wt..() lq2() is er esented{I of

homotpygroupsicNoe hatl cit s de gpre well defined isdined e have t

asged thih qeed 4. tecoc fgnrtrso h rusr (K n

We aread sawtha 3K S xS sotha
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-. wq_2lA\101 ) which we have implicitly made.

If the degree of e is nonzero then C must vanish somewhere in K.

Indeed, if e(x) # 0 for all x , K, then we may write K= c a j, where

j :3K + K is the inclusion mapping. Since ir (K) w_(S x D) = 0
q-2 q-2

(here we use q ) 4, and the convexity of D) the composition wq_.2(-) r-q-2(j)

vanishes, so that the degree of e is zero. Therefore we can complete the

proof by showing that this degree is nonzero.

with this end in mind we observe that the set

{ 4C0 ' ( ) m satisfies a, b, c of section 2, and also (9.2)}

is convex and therefore certainly connected. This means that all the maps c

which we have just considered are homotopic on aK, and they all have the

*' same degree. We can compute this degree by looking at any particular example

that pleases us.

Consider the following choice of A:

A(x.t... Fxm ) , x_+...+xm - (+m+1).x 0 .

We choose coordinates F1 .. 'q on Xp,q which are defined by

,- Xk = kp/q + Ek (1 4 k 4 q)

'.. or k > q+1 we define k by assuming that k+q = k holds.

S.~ imy iie .tify X with the group ring of Z/qZ, so that multiplication

,,,r is defined by convolution of the Ek-coordinates:

q-1
(Enk= J Ek- ni

The MA* 1Rq is simply given by

0.,

where - (L+m+1I e ' and ej represents j c Z/qZ in the group
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ring of Z/qZ. The map e is given by

y*C - Av(y*r) =y*( - Av(&))

where Av = (E1+...+ q)/q.

The charac*ers of Z/qZ are given by

Xj(ek) = e2viik/q

for j, k c Z/qZ.

One finds that

X.(y) = e e2 ik/ - (t+m+I)
~k=-9

so that if j # 0 mod (q) one has

Ix(y) + I+m+11 < I+m+1

and thus Re(Xj(y)) < 0, and in particular one sees that Xj(y) ' 0.

This implies that the only zeroes of c are given by Ek = constant,

i.e. by xk = k-p + x0. This discussion also allows us to compute the degree
q

of e. Indeed, the map C restricted to the subspace of Xpqi which is

defined by x0 = 0, is linear. Its kernel consists of those for which

X0( -AV( )) = 0, i.e. which are constant. So restricted to {x E Xp,q : xO = 01

*0 it is injective. It follows that the degree of nj3D + A\{0} is ±1. Since

the inclusion of RD in 3K - S x 3D induces an isomorphism on the (q-2)-

dimensional homotopy groups the degree of e 3K * A\{O} is also given by

+1 or -1.

The proof of theorem 9.1 is complete.

We turn to theorem 9.2.

Define the following two subsets of R.
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Rot+ = {w c R 9 X c B: x is a supersolution and

x has rotation number w}

Rot- = {w E R a x C B: x is a subsolution and

x has rotation number w}

It follows directly from theorem 9.1 that the union of Ro.+ and Rot, is

all of R. Moreover if we define:

Rot0 = {w c R I there exists a Birkhoff solution of

. rotation number w}

then we have Rot0 = Rot+ n Rot-. Indeed, the inclusions "c" are trivial,

and if w belongs to Rot+ and Rot- then there exist a Birkhoff sub-

solution x and a Birkhoff supersolution x, both of which have rotation

number w. For a suitable large integer M one will have x - M < x + M (in

view of the inequalities (3.1)) and theorem 4.2 plus the addendum following it

tell us that there exists a Birkhoff solution between x - M and x + M.

Hence C Rot0.

.. 'Using the compactness property described in section three one easily

shows that the sets Rot+ and Rot- are closed.

The hypothesis of theorem 9.2 is that w0 c Rot_ and w, C Rot+. Assume

that wo0 < I. Then we have just shown that there are two closed sets A+ =

[W0,w1] r Rot± whose union is the interval [w0 ,wi, and neither of which is

* empty. Since the interval is connected the intersection A+ fl A_ is nonempty.

Therefore there exists a Birkhoff orbit with rotation number w e [ 0 ,w 1J.

% The same line of reasoning can be followed when w, < w.0 so that we have

S. completed the proof of theorem 9.2.

If we are dealing with the two lowest dimensional cases Z = 0, m = 1

(i.e. degree one circle maps) and L = m = 1 (i.e. twist maps of a 2-

dimensional arnulus) then we can improve the previous results.
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Theorem 9.3 (t = 0, m = 1). If : S1 + S1 has degree one then it has

a Birkhoff orbit.

Proof. Let f R + R be a lift of 9, i.e. f £ C0 (R,R) and

f(x) + 1 = f(x+1). Then M = suplf(x) - xj is finite, and one easily

verifies that

x = -n-M , x = +noM

are a sub- and a supersolution for A(x0 ,xl) =x - f(x0 ). By theorem (9.2)

we know that there exists a Birkhoff solution of A(xn,xn+i) = 0.

In the next Theorem we consider a monotone twist map T of the two

dimensional annulus S' x R.

Theorem 9.4. If there exist a < b such that 9 maps the ring S* x [a,b]

.. into itself then 9 has a Birkhoff orbit.

Proof. Let F = (f,g) be lift of 9, and define the functions Y, Y

and A as in the beginning of section two. In addition, we consider two

auxiliary functions defined by fa(x) = f(x,a) and fb(x) = f(x,b).

Then fa represents a degree-one circle map, and the previous theorem

says that there exists a Birkhoff sequence _ for which -n+1 = f (ncZ)

"1. holds. If one checks the definition of Y, Y and A then one finds:

y(En,En+1 ) = a

Y(x n_,xn) = g(xn.l,Y(xn_ 1 ,xn)) > a

=--> A(Zn-l,_Xn,_n+1) 1 0 •

So x is a Birkhoff subsolution. By a similar argument a Birkhoff orbit for

the map fb must be a Birkhoff supersolution for A.

It follows that the map 9 has a Birkhoff orbit.

.!
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§10. The symplectic case.

In this final section we draw the reader's attention to a subclass of

monotone tecurrence relations whose associated map preserves a symplectic

structure. Not surprisingly, these recurrence relations are those which can

be derived from a variational principle.

Our construction goes like this. Loet h c C2(Rd+I) satisfy

(10.1) h Xk ) a (k301)

for some con'~tant 6> 0. Then we define the formal sum W(x) for x C X by

t-W(x) = h(x j x + 1 ... ,x.j~

This sum will not converge in general, but if x, y c X coincide except for a

finite number of components, then the a priori formal expression W(x) - W(y)

will lead to a finite sum. Hence one can define the derivative of W at an

x C X. One finds that:

ax h d(x ,-d...,x iI + h d1(x j- ...,*Xj~ + +0

0 (x j+d

def Ax ,..x
(J-d " j+d

The requirement that W be stationary at x c X is therefore equivalent to

the recurrence relation

(10.2) (j.d... Xjd 0 (jCZ)

If we assume that our original "generating function" h is periodic in the

sense that

h(xO+1,...,xd+l) Sh(xo,...,xd) + 0

ii holds for some constant 0 C R then A satisfies the periodicity requirement

of section 2. From
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M~x x.. h (x ..,x. )+...+h (x ... ,xax d- d d-i,d i-d* 011 0 d

if 0 < i d and a similar expression for a/x if -d i < 0 one sees

that A also satisfies the monotonicity condition, and the coerciveness

condition of section two. We conclude that the recurrence relation (10.2) is

monotone as we have defined the term.

The recurrence relation 10.2 therefore defines a C1 diffeomorphism of

the 2d-dimensional annulus A2d si~~2l We denote this map by V. (as

in section 2).

We proceed to construct an invariant symplectic form forV.

consider the "partial action" function

d
*S(xil .... xd' xll...Ix d) I h(x....x d x 1... X.

j=1 3

If x c X is a solution of (10.2), then

I, S 1 = S(x..d+1...,xo,xl,...,xd) + S(x1...xdlxd+1, ... ,x2d)

is stationary with respect to variations of X1, ...,lxd. Regarding S1  as a

function of xl,...,XN the relation dS1  0 may be written as

(10.3) EY j(xd+ll.lx d )dxj = EY J(x 11....Ix 2d )dx

where

- - asY( ,il.... Xd i..,x d ax. (I < j 4 d)

Y (xXx ... (Ij-d
I 1 ' dl1 ~d)=-(1 j )ax~

It follows from (10.3) that, if we write e for YjdXj .e Yddxd then

e (8)~ dS

so that T. preserves the two form -dO w. The matrix whose (i,j) entry

is ay.i/aXi+d is lower-triangular, with positive numbers on the diagonal, so
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that the 2-form dw = -(dY 1 ^ dx, +-.o+ dYd ^ dxd) has maximal rank, and is a

symplectic form.

A very special case arises if one takes

1d 2 k
h(x0 X) ( -- y x + cos 2 x

h~xD..id 2 j- 0-i 2

with Y1,''',yd > 0 and k R constants. The associated A is

d
.. L(X-d' -- -j - 2x0 + x ) + k sin (2wx o0

j= 1

and the corresponding map TA generalizes the so called "standard map" (i.e.

the case d = 1, y 1 
= 1).

As an application of the results of section 7 we note that when

d
k ) Ir 1 Jj

- 3 1
one has a supersolution x = - + I J and a subsolution xj - - IJI which

j 4 4

satisfy (6.1), so that the map q. has positive entropy.

By analogy with the Aubry-Le Daeron theory [ALD] one could say that the

solutions of (10.2) describe the equilibrium states of a bi-infinite chain of

particles in which any sequence of d + I consecutive particles contributes

A an amount equal to -h(xj,...xj+d) to the total energy of the chain The

number xj then represents the position of the j-th particle. See fig. 3.

From here on we assume that h is truly periodic, i.e. that 0 - 0.

As in the Aubry-Le Daeron theory one can show that the function

q
W(x) - [ h(xi,...,xi+d)

i-i

is well defined on Xpq/Z, and in fact is proper on this space. Hence W

achieves its maximum on Xp,q, and for any (p,q) we obtain the existence of

a periodic orbit of T of type (p,q).

-41-



-~ - -. r .r -W -r r rrr r W -r W om W-- - Ir - lv apr.S-lIII

,"

I !,V(x)

51.7

" xx'

., Fi. :_ . A chain of particles with nearest

-¥p and second nearest neighbour interaction.

-42



R - - -

Using the positivity of the mixed derivatives one also shows that for x,

y Xp,q one has

W(x) + W(y) < W(x , y) + W(x A Y)

... where and denote the usual lattice operations on X (one could
pq

* adapt the proof on page 520 of [Ma 2]). Thus if x maximizes W on Xp,q

then so does Tk, X for any k, t and one finds that
2 W(x) 4 W(X Tk,J(x)) + W(x - Tk,lUx)) 4 2 W(x).

Hence x , T,,(x) and x Tk,£(x) also maximize W, and therefore must be

solutions of (10.2). Since our A satisfies condition (9.2) the proof of

lemma 9.2 indicates that we either have x . Tk,t(x) " x or x A Tk,L(x) = x;

* in other words x and Tkt(x) are ordered.

.. ~:The conclusion is that any x c which maximizes W is a Birkhoff

sequence.

Finally we note that, just as in the Aubry-Le Daeron case, one can obtain

-. Birkhoff orbits with prescribed rotation number by taking limits of similar

orbits with rational rotation number.
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